
Options:

- Sprayed conformal coating
- RoHS

Features

- Industry standard full-brick package and footprint 4.6"x2.4"x0.5"
- High power density 90W/in3
- High efficiency 90% typical
- 2:1 input voltage range
- Low output noise and ripple
- Remote sense
- Over-temperature protection
- Output over/current voltage protection
- I.O.G. signal open collector output
- Output voltage adjustment +10% / -40%
- UL60950-1/ EN60950-1 Certified
- RoHS (2002/95/EC) complaint

Numbering Convention

No	Features	Descriptions					
1	Product Series	Full-brick Al-Baseplate Series					
2	Remote on/off Logic	L – Negative Logic					
	3	H or Default – Positive Logic					
3	Typical Output Power	500 – Output Power 500Watts					
4	Typical Output Voltage	28 – Output Voltage 28V					
(5)	Number of Outputs	S – Single Output					
6	Typical Input Voltage	C – Input Voltage 48V					
	Construct Conference to action	C – Sprayed Conformal coating					
7	Sprayed Conformal coating	Default: no Sprayed Conformal coating					
		G5 – RoHS5					
8	RoHS feature	G – lead-free products, RoHS6					

PDF created with pdfFactory Pro trial version www.pdffactory.com

1. Description

The power modules are DC-DC converters in an industry full-brick packaging and footprint, open-frame design, provide up to $28V_{DC}$ output voltage and 18A output current. The power modules feature a wide input voltage range, high efficiency, excellent thermal performance and high isolation voltage, and are is well suited for telecom ,communication, industrial applications and test equipments, etc.

2. Technical Specifications (Unless otherwise indicated, all specifications are typical at nominal input voltage, full load at $25\,^{\circ}$ C, with an external sink, a 100uF/100V electrolytic capacitor at input, a 560uF/50V electrolytic capacitor and a 10μ F ceramic capacitor at output . The temperature character of electrolytic capacitors shall be $105\,^{\circ}$ C.)

Parameter		Test Condition	Min	Тур	Max	Unit			
2.1 Absolute Maximum Ratings									
Input Voltage (Vi)		at no operating, continuous	0		80	Vdc			
		transient (100ms)			100	Vdc			
Max Output	Power (Pomax)	allowable operating conditions			504	W			
2.2 Input S	pecifications								
Typical Inpu	t Voltage(Vinom)	_		48	_	Vdc			
Input Voltag	e Range	_	36		76	Vdc			
Input Under	-voltage protection	lonom	31	_	34	Vdc			
Input Under	-voltage Recovery Point	lonom	33		36	Vdc			
Maximum In	put current (limax)	Vimin, Vonom, Ionom	_	_	15.9	A.			
No-load Input Current (lio)		Vinom, Io=0A	_	140	200	mA			
Static Input Current (liof)		Vinom, remote output shutdown			40	mA			
No-load Loss		Vinom, Io=0A		6.7	9.6	W			
Inrush Trans	sient current	lo=lonom			0.1	A^2S			
Input Ripple	Current	Vinom, Ionom		100	160	mA			
Input Filterin	ng Capacitance	$Vinom \sim Vinmax$		100		μF			
Remote	On	1mA ≤ I(on/off) ≤ 5mA (between +ON/OFF and -ON/OFF)							
	Off	Open Circuit (between +ON/OFF and -ON/OFF)							
2.3 Output	Specifications								
Output voltage set-point (Vonom)		Vinom, Ionom	27.72	28	28.28	Vdc			
Typical Output Current (Ionom)				18	_	A.			
Output Current Range (Io)		Po≤504W	0	_	18	A.			
Line Regulation (Vov)		Vimin-Vimax, Ionom		_	±0.2	%Vo			
Load Regula	ation (VoI)	0-100%lonom, Vinom	_		±0.5	%Vo			
Voltage Reg	ulation Accuracy	0-100%lo,V _{INMIN} ~V _{INMAX}			±1	%Vo			

FDR-L50028SC-CG5

RoHS Compliant

DC-DC Converte	er				Dat	a sheet	
Par	ameter	Test Condition	Min	Тур	Max	Unit	
Output Voltage Ti	rim (Voadj)	Io≤Ionom, Po≤504W	-40	-	+10	%Vo	
Output Over-voltage	Protection Mode		turr	lockout, n-on recovery		l	
Protection	Protection Range	Po <pomax< td=""><td>32.2</td><td></td><td>42</td><td>Vdc</td></pomax<>	32.2		42	Vdc	
Output Over-current	Protection Mode		Constant current, Automatic recovery			_	
protection	Protection Range	Vinmin~Vinmax, Tc(baseplate temp.) = -40~100°C Vinom	105		150	%lono m	
Output Short-circuit protection	Protection Mode	_	Hico	Hiccup, Automatic recovery			
	Peak Deviation	25%-50%-25%lonom 50%-50%-25%lonom	1	1	1400	mV	
Dynamic Load	Settling Time	Δ Io/ Δ t=0.1A/ μ S,Vinom		1	200	μs	
Response	Peak Deviation	0%-100%-0%lonom		1	14	٧	
	Settling Time	Δ Io/ Δ t=0.1A/ μ S,Vinom	1	_	800	μs	
	RMS(20MHz)	Vinom, Ionom, externally add a 560μF electrolytic	1	_	80		
0 ((5)	Peak-to-Peak(20MHz)	capacitor and a 10μF		_	260		
Output Ripple and Noise	Peak-to-Peak(100MHz)	ceramic capacitor to output, and add a 100μF/100V electrolytic capacitor to input	I	_	280	mV	
External Output 0	Capacitance (Co)	Vinmin~Vimax, 0~100%lo	560	1	10000	μF	
Turn-on/off Peak	Deviation	Vinom, Ionom	I	_	±5	%Vo	
Turn-on Delay Tir	me	90%Vinnom 10%Vonom	20	_	200	mS	
Turn-on Rise Tim	e	10%Vonom90%Vonom	I	20	40	mS	
AUX Terminal (Au	ux. Supply power)	Aux. Supply Current ≤20mA	7.6	8	8.4	Vdc	
PC Terminal (Par	allel operation)	See 4.11	Possible				
I.O.G Signal		See 4.9	Possible(Open collector output)				
Remote Sense voltage Sampling		See 4.7	Possible				
2.4 Safety Spec	ifications						
	Input to output	Leak Current ≤ 1mA, 1min	1500	1	_	Vdc	
Isolation voltage	Input to Case	Leak Current ≤ 1mA, 1min	1050		_	Vdc	
	Output to Case	Leak Current ≤ 1mA, 1min	500			Vdc	
Isolation Resistance (RISO)		500V _{DC}	50			МΩ	
Safety Certificate		UL, TUV-SUD					
2.5 Reliability							

www.bct.com.cn Page 3, Total 12 pages V2.2-2009.04

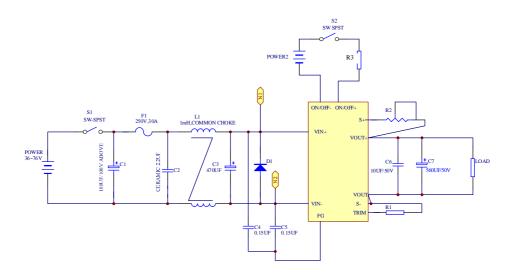
DC-DC Converter

FDR-L50028SC-CG5

RoHS Compliant

Data sheet

Par	ameter	Test Condition	Min	Тур	Max	Unit		
1 41	umotor .			71				
		Frequency: 10~55Hz	After being tested, no damage to the					
	,	Amplitude: 0.35mm	converter and its components, the appearance, output voltage and output ripple and noise (p-p) meet the data sheet requirements.					
Vibration Test(sin	e)	Acceleration: 50m/s ²						
		Cycle: X,Y,Z 30min each axis						
		Peak Acceleration: 300m/s ²	After being tested, no damage to the converter and its components, the appearance, output voltage and output ripple and noise (p-p) meet the data sheet requirements.					
Imposet Test (helf	oin o	Duration: 6ms						
Impact Test (half-	sine)	6 times for three perpendicular directions						
МТОГ		≥2×10 ⁶ h Bellcore TR-332	(Ta=25°0	2)				
MTBF		≥1×10 ⁶ h Bellcore TR-332(Ta=55°C)						
2.6 Environmen	ntal Specifications							
Relative Humidity	1	(40±2) ℃, No dew	_		90	%RH		
Cooling			Conduction Cooling (forced-air cooling heatsink)			cooling or		
	Protection Mode	_	Hiccup, Auto-recovery					
Over-temperatu re protection	Temperature Range	Baseplate Temp., see the diagram for test points	100℃~125℃					
To proteodon	Recovery Hysteresis Range	Baseplate Temp., see the diagram for test points	5	10	15	$^{\circ}$		
Operating Basepl	late Temperature		-40		+100	$^{\circ}$ C		
Storage Tempera	ture (Tst)		-40		+100	$^{\circ}$ C		
2.7 General Spe	ecifications							
Switching Freque	ency			250		kHz		
Temperature Coefficient (Tcoeff)		<u>—</u>	_	_	±0.02	%/℃		
Efficiency (η)		Vinom,lonom	89	90		%		
Weight				150	_	g		
RoHS		According to 2002/95/EC directive						
Anti-sulfuration fe	eature	Sprayed conformal coating						


Note:

^{1.} Low-temperature Test at -40 $^{\circ}$ C: Vinom, Ionom, externally add a 2800 μ F electrolytic capacitor and a 10 μ F ceramic capacitor to output, and add a 330 μ F/100V electrolytic capacitor to input.

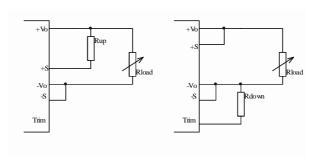
^{2.} High-temperature Test: additional heatsink, with force-air cooling, Efficiency- η >88%

3. Basic Application Circuit and Considerations

3.1 Typical Application

- 3.2 When no external power supply for remote, short connect –ON/OFF to –Vin directly, and connect +ON/OFF to +Vin using an external resistor R3(30kΩ).
- 3.3 When no EMC requirement, L1, C3, C4 and C5 are optional.
- 3.4 With no demand for output trim, +S and –S shall respectively be connected to +Vout and –Vout directly. For testing, respectively connect +S and –S to +Vout and –Vout, or the module is at over-voltage status.
- 3.4.1 For output trim-up, with no resistor R1, adjust rheostat R2 to trim output up (V₀∼+10%V₀).

Note: output power \leq 504W, R2 \leq 3k Ω

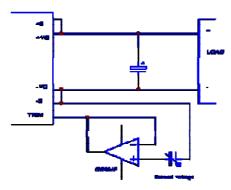

3.4.2 For output trim-down, with no rheostat R2, short connect +S to + V_0 , adjust resistor R1 to trim output down (-40% V_0 ~ V_0)

Note: output current \leq 18A(Maximum), R1 \geq 9.1k Ω

- 3.5 When running at -20°C, double the capacitance of C1, and triple the capacitance of C7; when running at -40°C, quadruple the capacitance of C1, and sextuple the capacitance of C7. Use several capacitors in parallel to reduce ESR.
- 3.6 For high-temperature application, keep air channels clear, and provide cooling as per the derating curve.
- 3.7 C6 shall be high-frequency ceramic capacitor.
- 4. Instruction for Use/Test (heatsink or forced cooling required)
- 4.1 An input voltage exceeding the max. input voltage may cause permanent damage to the module. An max. input ripple exceeding 4V may make the output ripple exceed the data sheet. Sudden changes of input voltage will cause output voltage inrush. The module is not internally fused, and an external 30A/250V fuse is required. The leads of C3, C6 and C7 shall be as short as possible. D1 is used to protect the module from inverse input voltage, and it shall endure a isolation voltage more than 100V.

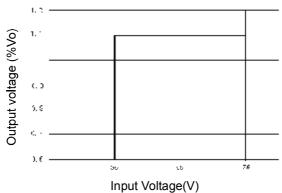
4.2 Output Voltage Trim

4.2.1 External Resistor Mode


Trim up/down with external resistor

Trim-up: Rup=Vo $(1+\Delta\%)$ -28 $(k\Omega)$ $0 \le \Delta \le 10$

Trim-down: Rdown=5.92 $(1/\Delta\%-1)$ $(k\Omega)$ $0<\Delta \le 40$


 Δ (%): Ratio of output voltage changes to nominal output voltage

4.2.2 External Power Supply Mode: adjust the input voltage of amplifier to trim up/down the output voltage

Trim up/down with external power supply

4.2.3 Output Voltage Trim

4.2.4 Note: The over-voltage protection will function when trim-up voltage is higher than over-voltage threshold.

DC-DC Converter

4.3 Max Ripple and Noise: test the ripple and noise as the following figure shows. The output leads shall be twisted-pair, of which the length is no more than 50mm.

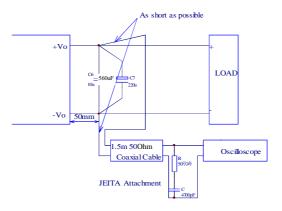


Figure for testing output ripple and noise

4.4 Over-current Protection

Operating at over-current conditions for long time may cause damage to the module; if the output is in short-circuit, the module is in hiccup mode, and the output current varies from a few mA to hundreds of mA.

4.5 Over-voltage Protection

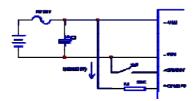
When the module is at over-voltage conditions, the module is deadlocked; after eliminating the over-voltage conditions, the module needs to be reset to recover the output voltage.

Test Method: disconnect +S and +Vout (low load), series an additional 50k rheostat between +S and +Vout, adjust the rheostat to trim the output voltage up (32.2V to 42V), the module will turn off the output voltage until being reset.

4.6 Over-temperature Protection

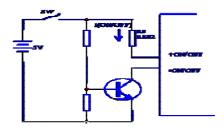
When the baseplate temperature is at 100° C to 125° C, the over-temperature protection functions, and the output is turn off; when the baseplate temperature is 5° C to 15° C less than the protection point, the module is auto recovered.

4.7 Remote Sense (+S, -S terminals)


When using remote sense, use twisted-pair to connect +S and -S respectively to + LOAD and -LOAD; when not using remote sense, connect +S and -S respectively to +Vo and -Vo. The twisted-pair shall be as short as possible.

4.8 Remote on/off (+ON/OFF and -ON/OFF terminals): two modes;

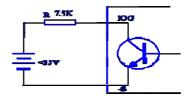
Note:


- a. if the leads of +ON/OFF and -ON/OFF are a bit longer, add a 0.1uF capacitor between +ON/OFF and -ON/OFF.
 - b. A current-limit resistor can be also connected to -ON/OFF.
 - c. $1mA \le I(ON/OFF) \le 5mA$

4.8.1 Connect ON/OFF terminals to input terminals: put a 30kΩ resistor R1 between +ON/OFF and +Vin.

Remote on/off mode I: Connect ON/OFF terminals to input terminals

4.8.2 Connect ON/OFF terminals to external power supply


Remote on/off mode II: Connect ON/OFF terminals to external power supply

4.9 I.O.G. Signal (INVERTER OPERATION GOOD)

Monitor the I.O.G. signals to learn about whether the module operates normally. The I.O.G. signal is at low resistance state when the module operates normally (not including the deadlock status caused by over-voltage protection), or at high resistance state when the module stops or operates abnormally (not including over-current, dynamic response, short-circuit protection).

When the module operates normally, the internal transistor V304 is on, and I.O.G. is at low level; when the short-circuit protection functions, the output and V304 are in hiccup mode, and I.O.G. alternates between high level and low level; when over-voltage protection functions, V304 is off, and I.O.G. is at high level; when over-current protection functions, V304 is on and I.O.G. is at low level.

Condition of Use: I.O.G. has open-collector output, the external voltage shall be less than 35V, and the sinking current is 5mA.

IGM Signal Test (the internal transistor is V304)

4.10 For isolation voltage test, short +Vin to –Vin, short +ON/OFF to -ON/OFF, short +Vout to-Vout, and short signal terminals, like I.O.G., Trim, +S and –S.

Data sheet

4.11 Parallel Application

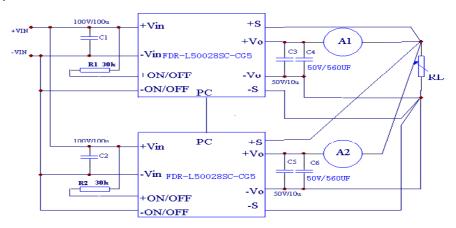
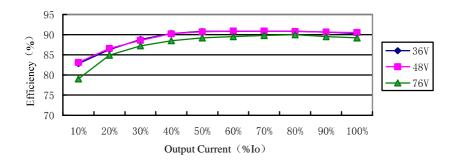



Figure for parallel application

Note: the output voltage of each module shall within the output voltage set-point range, and the output power shall not exceed 95% of total rated power.

5 Characteristic Curves (Ta=25°C)

5.1 Efficiency Curve

Load	20%lo	50%lo	80%lo
Efficiency (%) (Vin=48V)	86.4	90.7	90.8

Efficiency Curve

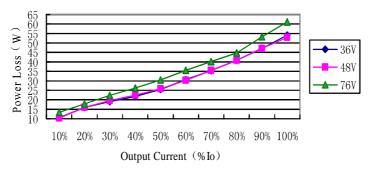
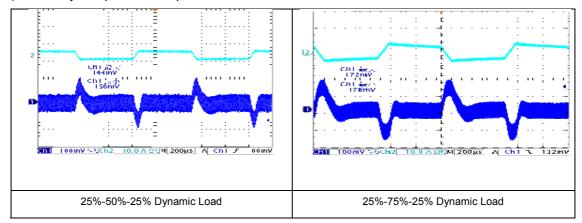
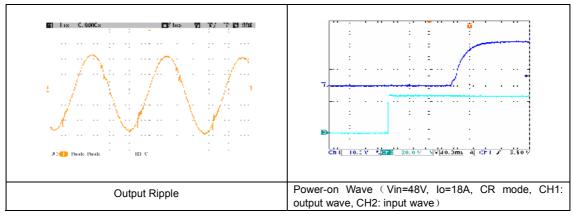



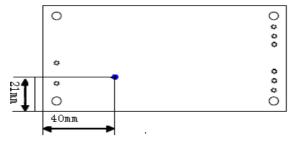
Figure 10. Power Loss vs Output Current

5.2 Dynamic Response


Data sheet

Test Condition: Vin=48V, add an $100\mu F$ electrolytic capacitor to input, add an $10\mu F$ tantalum capacitor and $560\mu F$ electrolytic capacitor to output

5.3 Output Ripple and Power-on Wave

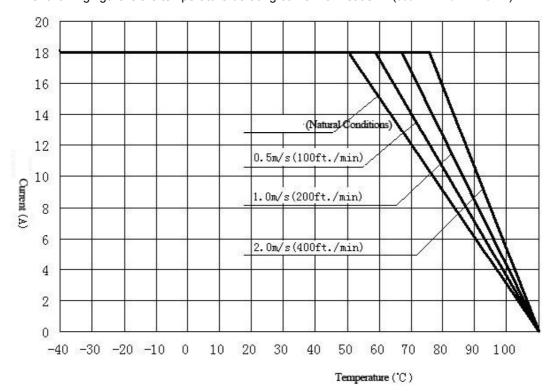

Test Condition: Ta=25 $^{\circ}$ C, Vin=48V, Io=18A, 20MHz, externally add a 560 μ F electrolytic capacitor and a 10 μ F tantalum capacitor to output, and add a 100 μ F/100V electrolytic capacitor to input

5.4 Temperature Derating Curve

The module can operate at a tougher temperature. However, a good thermal dissipation is necessary for normal operation. Monitor the temperatures of points as the following figure shows to judge whether the operation temperature exceeds the specified temperature limit.

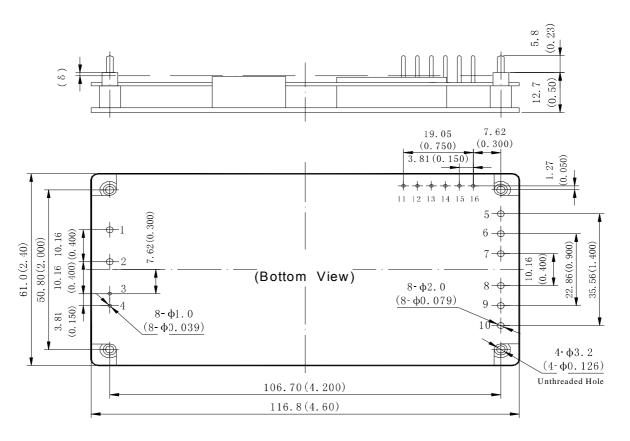
TOP VIEW

Temperature Test Points (Top View of Al-PCB)



FDR-L50028SC-CG5

RoHS Compliant


Data sheet

The following figure is the temperature-derating curve with heat sink (300mm×220mm×43mm)

6. Dimensions and Pin definition

No.	1	2	3	4	5, 6, 7	8, 9, 10	11	12	13	14	15	16
Symbol	-Vin	+Vin	-ON/OFF	+ON/OFF	-Vout	+Vout	AUX	IOG	PC	TRIM	+S	-S
Definition	Negtive Input	Positive Input	Negtive Remote on/off	Positive Remote on/off	Negtive Output	Positive Output	Aux. Power Supply	Signal	Parallel Conn.	Trim up/down	Positive Remote Sense	l